(55) Abraham, M. H.; Grelller, P. L.; Mana, J. J. Chem. Thermodyn. 1974, $6,1175$.
(56) Maher, P. J.; Smlth, B. D. J. Chem. Eng. Data 1980, 25, 61.
(57) Pul'tsin, M. N.; Gaile, A. A.; Proskuryakov, V. A. Russ. J. Phys . Chem. (Engl. Transl.) 1973, 47, 428.
(58) Monfort, J. P.; Vidal, J.; Renon, H. J. Chim. Phys . Phys .-Chim. Blol. 1970, 67, 748.
(59) Pecsar, R. E.; Martin, J. J. Anal. Chem. 1966, 38, 1661.
(60) Karger, B. L.; Sewell, P. A.; Castells, R. C.; Hartkopf, A. J. Colloh Interface Scl. 1971, 35, 328.

Received for review June 29, 1981. Revised manuscript received May 26, 1982. Accepted June 18, 1982. We gratefully acknowledge the financial support provided by the National Sclence Foundation and Phillips Petroleum Co.

Vapor Pressures of Some $\mathbf{C}_{\mathbf{4}}$ Hydrocarbons and Their Mixtures

Judth L. Flebbe, David A. Barclay, and David B. Manley*
Chemical Engineering Department, University of Missouri-Rolla, Rolla, Missouri 65401

New experimental vapor pressures for the six binary systems containing 1,3 -butadiene, n-butane, trans-2-butene, and c/s-2-butene at temperatures from 278 to 358 K are reported. Relative volatilitles were calculated by using the isothermal general coexistence equation.

Recent investigators $(1,2)$ have demonstrated the utility of the total pressure technique for obtaining vapor-liquid equilibrium information on systems of close-boiling components of sufficient accuracy to be used in distillation design. Laurance and Swift (3), Steele et al. (4), and Martinez-Ortiz and Manley (5), in particular, have presented vapor pressures for various combinations of the C_{4} hydrocarbon isomers. This study is a continuation and extension of their work. Vapor pressures were measured for 1,3-butadiene, n-butane, trans-2-butene, cis-2butene, and the six binary combinations of these four isomers. Temperature ranges were $278-338 \mathrm{~K}$ for butadiene and mixtures containing butadiene and 278 - 358 K for the remaining isomers and their mixtures.

Theory

The isothermal Gibbs-Duhem equation for a two-component system is

$$
\begin{equation*}
(V \mathrm{~d} P) / R T=z_{1} d \ln f_{1}+z_{2} d \ln f_{2} \tag{1}
\end{equation*}
$$

Writing this equation for both vapor and liquid phases and subtracting, noting that $f_{I}^{\vee}=f_{l}^{\mathrm{L}}$ at equilibrium, gives

$$
\begin{equation*}
(1 / R T)\left(V^{V}-V^{L}\right) d P=\left(y_{1}-x_{1}\right) d \ln f_{1}+\left(y_{2}-x_{2}\right) d \ln f_{2} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
(1 / R T)\left(V^{V}-V^{L}\right) d P=\left(y_{1}-x_{1}\right) d \ln \left(f_{1} / f_{2}\right) \tag{3}
\end{equation*}
$$

The fugacities are given by

$$
\begin{equation*}
f_{1}=y_{1} \phi_{1} P \tag{4}
\end{equation*}
$$

At this point it is necessary to decide upon an equation of state for the vapor phase in order to calculate the fugacity coetficient, ϕ_{1}. The virial equation truncated after the second term was judged to be sufficient for these systems. The Berlin form

$$
\begin{equation*}
Z=V^{\vee} P / R T=1+B P \tag{5}
\end{equation*}
$$

is somewhat more convenient to use than the Leiden form. The

[^0]mixture virial coefficient, B, is taken to be
\[

$$
\begin{equation*}
B=y_{1} B_{1}+\left(1-y_{1}\right) B_{2} \tag{6}
\end{equation*}
$$

\]

Using the commonly known relationship between fugacity and an equation of state

$$
\begin{equation*}
\phi_{l}=\exp \left(B_{l} P\right) \tag{7}
\end{equation*}
$$

It is further assumed that the liquid phase forms an ideal mixture

$$
\begin{equation*}
V^{L}=x_{1} V_{1}^{L}+\left(1-x_{1}\right) V_{2}^{L} \tag{8}
\end{equation*}
$$

where $V_{l}{ }^{L}$ is the saturated-liquid volume. We are interested in calculating relative volatilities, so y_{1} in the above equations will be replaced by α according to the relation

$$
\begin{equation*}
\alpha=y_{1}\left(1-x_{1}\right) /\left[\left(1-y_{1}\right) x_{1}\right] \tag{9}
\end{equation*}
$$

Combining eq 3-9 gives the result

$$
\begin{gather*}
\frac{(\alpha-1)(1-x) x}{1+(\alpha-1) x} \frac{d \ln \alpha}{d x}+\frac{\alpha-1}{1+(\alpha-1) x}=A \frac{d \ln P}{d x} \tag{10}\\
A=\operatorname{fcn}\left(x, P ; V_{1}{ }^{\mathrm{L}}, B_{i}\right) \tag{11}
\end{gather*}
$$

where x is for the first component. Equation 10 is then integrated for α using the experimentally determined $P-x$ function.

Experimental Section

The equipment of Walker (6) and Steele (7) was used with only slight modifications to improve the reliability and speed. The primary element is an enclosed equilibrium cell immersed in a thermostated water bath. By means of a diaphragm mechanism, the pressure within the cell was balanced against an external nitrogen pressure which was then measured. The system was capable of handling up to four equilibrium cells at a time which significantly decreased the amount of time required to complete a binary. The temperature of the water bath was measured with a Leeds and Northrup platinum resistance thermometer calibrated by the National Bureau of Standards to the IPTS of 1968. Pressures at 278 K were measured with a Mensor Corp. quartz manometer, and those at the upper temperature with a Ruska Corp. dead-weight gauge with callibration traceable to NBS.
Phillips research-grade hydrocarbons were used which had stated purities of not less than 99.95, 99.95, 99.80, and 99.97 wt $\%$ for butadiene, n-butane, trans-2-butene, and cis-2-butene, respectively. Noncondensables were removed by a freezing and evacuating cycle. Analysis of the vapor phase by gas chromatograph showed no detectable noncondensable. The chromatograph was capable of detecting air mole fractions

Table I. Experimental Vapor Pressures

Figure 1. 1,3-Butadiene vapor pressures.
as low as 50 ppm . The mixtures were made by metering the components into the cell individually and weighing the cell after each addition on a Mettler analytical balance.

Each serles of measurements on a sample was begun at the lowest temperature, 278 K . The temperature was increased by 20 K increments to the highest temperature and then decreased by the same increments. This gave a duplicate point at each temperature and served as a check on any possible reactions. An initial set of measurements on butadene and two mixtures containing butadiene showed approximately 0.8% polymerization occurring at 358 K . These data were discarded, and subsequent measurements on butadiene systems were limited to 338 K. Because of the relatively short time that the samples were held at elevated temperatures, little polymerization occurred and no significant pressure drops were then observed.

Results

The experimental vapor pressures corrected to constant isotherms for the four pure components are given in Table I. These pressures were correlated by an equation given by Goodwin (8)

$$
\begin{align*}
\ln \left(P / P_{\mathrm{R}}\right) & =A X+B X^{2}+\mathbf{C} X^{3}+\mathrm{DX}(1-X)^{3 / 2} \tag{12}\\
X & =\left(1-T_{\mathrm{R}} / T\right) /\left(1-T_{\mathrm{R}} / T_{\mathrm{C}}\right) \tag{13}
\end{align*}
$$

Here, P_{R} and T_{R} are a reference pressure and a reference temperature, taken as atmospheric pressure and the normal boiling point. Table II gives the constants for each component. The critical temperatures, T_{c}, are from API Project 44 (9). Figures $1-4$ show the deviations of various literature values from this line. Differences in these pressures are probably the result of varlations in the degassing technique and the amount of impurities in the samples. In general, noncondensables in

Table II. Goodwin Constants for Pure Components

	$1,3-$ butadiene	n-butane	trans- 2-butene	cis- 2-butene
A	-0.12665	4.2761	3.2093	4.33311
B	5.9138	-1.0720	0.68987	-0.94975
C	-1.8703	0.36754	-0.22929	0.27924
D	3.94262	-0.55279	0.54896	-0.48785
$T_{\mathrm{R}}, \mathrm{K}$	268.58	272.60	274.03	276.81
$T_{\mathrm{C}}, \mathrm{K}$	425.0	425.2	428.6	435.6

Figure 2. n-Butane vapor pressures.

Figure 3. trans-2-Butene vapor pressures.

Flgure 4. cls-2-Butene vapor pressures.
the vapor phase result in pressures which are high by a constant amount, while heavy impurities in the liquid phase lower the pressure by a constant percentage.

Table III contains the experimental vapor pressures for the six binaries corrected to constant isotherms.

The estimated probable error in the temperature measurements is $\pm 0.007 \mathrm{~K}$ and that in the pressure measurements is $\pm 100 \mathrm{~Pa}$ or 0.015%, whichever is larger. The llquid mole fraction was determined from the overall composition by assuming an ideal (Roault's law) mixture. The largest correction from overall mole fraction to liquid mole fraction was 0.0005

Table III. Experimental Vapor Pressure of Binaries

1,3-butadiene/n-butane				1,3-butadiene/trans-2-butene			
$T, \mathrm{~K}$	x	P, MPa		$T, \mathrm{~K}$	x		
278.15	0.0945	0.12981	0.12988	278.15	0.0529	0.12019	
	0.2382	0.13546	0.13554		0.2657	0.12630	0.12632
	0.5091	0.14273	0.14280		0.7516	0.13925	0.13929
	0.7463	0.14587	0.14585		0.9048	0.14268	0.14280
	0.8502	0.14590	0.14572		0.9515	0.14375	0.14367
298.15	0.0945	0.25231	0.25240	298.15	0.0529	0.23700	0.23718
	0.2381	0.26263	0.26270		0.2656	0.24814	0.24807
	0.5091	0.27604	0.27612		0.7515	0.27200	0.27179
	0.7462	0.28248	0.28242		0.9047	0.27810	0.27798
	0.8502	0.28275	0.28260		0.9515	0.27971	0.27955
318.15	0.0945	0.44899	0.44892	318.15	0.0529	0.42641	0.42638
	0.2381	0.46534	0.46539		0.2655	0.44446	0.44428
	0.5090	0.48799	0.48791		0.7515	0.48396	0.48377
	0.7462	0.49915	0.49902		0.9047	0.49378	0.49346
	0.8502	0.50020	0.50012		0.9515	0.49646	0.49612
338.15	0.0944	0.74166	0.74169	338.15	0.0529	0.71216	0.71204
	0.2380	0.76699	0.76704		0.2655	0.73954	0.73953
	0.5089	0.80254	0.80257		0.7514	0.79980	0.79941
	0.7461	0.82072	0.82070		0.9047	0.81519	0.81484
	0.8502	0.82337	0.82314		0.9515	0.81929	0.81857
1,3-butadiene/cis-2-butene				n-butane/trans-2-butene			
T, K	x	P, MPa		$T, \mathrm{~K}$	x	P, MPa	
278.15	0.0882	0.11031	0.11046	278.15	0.2488	0.12155	0.12171
	0.2503	0.11682	0.11682		0.5019	0.12359	0.12327
	0.5029	0.12641	0.12650		0.7493	0.12422	0.12423
	0.7498	0.13566	0.13580		0.9001	0.12457	
298.15	0.0882	0.22034	0.22058	298.15	0.2488	0.23955	0.23974
	0.2501	0.23166	0.23179		0.5019	0.24256	0.24241
	0.5028	0.24896	0.24901		0.7493	0.24339	0.24366
	0.7497	0.26500	0.26526		0.9001	0.24335	0.24357
318.15	0.0882	0.40003	0.40008	318.15	0.2488	0.42955	0.42958
	0.2500	0.41848	0.41851		0.5019	0.43383	0.43360
	0.5027	0.44644	0.44617		0.7493	0.43495	0.43517
	0.7496	0.47280	0.47271		0.9001	0.43482	0.43500
338.15	0.0882	0.67250	0.67254	338.15	0.2488	0.71593	0.71586
	0.2498	0.70015	0.70032		0.5019	0.72132	0.72080
	0.5026	0.74301	0.74306		0.7493	0.72174	0.72196
	0.7495	0.78264	0.78250		0.9001	0.72129	0.72149
				358.15			
					0.7493	1.12984	1.12988
					0.9001	1.12837	1.12842
n-butane/cis-2-butene				trans-2-butene/cis-2-butene			
$T, \mathrm{~K}$	x	P, MPa		$T, \mathrm{~K}$	x	P, MPa	
278.15	0.2642	0.11369	0.11380	278.15	0.2756	0.10982	0.10990
	0.5000	0.11851	0.11861		0.5092	0.11267	0.11274
	0.7507	0.12147			0.7540	0.11544	0.11551
	0.8937	0.12331	0.12339		0.8870	0.11706	0.11719
298.15	0.2642	0.22561	0.22583	298.15	0.2756	0.21944	0.21949
	0.5000	0.23335	0.23367		0.5091	0.22432	0.22436
	0.7506	0.23862	0.23855		0.7540	0.22912	0.22914
	0.8937	0.24172	0.24176		0.8870	0.23167	0.23183
318.15	0.2642	0.40675	0.40740	318.15	0.2755	0.39810	0.39825
	0.5000	0.41791	0.41940		0.5091	0.40601	0.40606
	0.7506	0.42704	0.42696		0.7540	0.41364	0.41378
	0.8937	0.43156	0.43214		0.8870	0.41782	0.41802
338.15	0.2642	0.68190	0.68199	338.15	0.2755	0.66965	0.66978
	0.5000	0.69888	0.69898		0.5090	0.68129	0.68126
	0.7506	0.71008	0.71001		0.7540	0.69316	0.69283
	0.8937	0.71667	0.71734		0.8870	0.69906	0.69934
358.15	0.2642	1.07422	1.07415	358.15	0.2755	1.05883	1.05893
	0.5000	1.09698	1.09707		0.5090	1.07560	1.07567
	0.7506	1.11268	1.11231		0.8870	1.10093	1.10090
	0.8937	1.12110	1.12109				

Table IV. Calculated Results for 1,3-Butadiene/n-Butane

x	$T=278.15 \mathrm{~K}$		$T=298.15 \mathrm{~K}$		$T=318.15 \mathrm{~K}$		$T=338.15 \mathrm{~K}$	
	α	P, MPa						
0.0	1.452	0.12454	1.380	0.24363	1.321	0.43449	1.269	0.72058
0.1	1.380	0.12989	1.324	0.25278	1.277	0.44901	1.234	0.74240
0.2	1.312	0.13420	1.272	0.26035	1.236	0.46129	1.201	0.76110
0.3	1.251	0.13765	1.225	0.26659	1.198	0.47161	1.171	0.77703
0.4	1.197	0.14040	1.181	0.27170	1.163	0.48023	1.142	0.79050
0.5	1.150	0.14257	1.142	0.27583	1.130	0.48732	1.115	0.80170
0.6	1.108	0.14422	1.106	0.27908	1.099	0.49298	1.089	0.81077
0.7	1.065	0.14537	1.069	0.28141	1.068	0.49719	1.064	0.81771
0.8	1.017	0.14594	1.028	0.28275	1.034	0.49985	1.037	0.82241
0.9	0.962	0.14579	0.982	0.28290	0.998	0.50072	1.009	0.82463
1.0	0.904	0.14471	0.934	0.28157	0.959	0.49946	0.979	0.82403

Table V. Calculated Results for 1,3-Butadiene/trans-2-Butene

x	$T=278.15 \mathrm{~K}$		$T=298.15 \mathrm{~K}$		$T=318.15 \mathrm{~K}$		$T=338.15 \mathrm{~K}$	
	α	P, MPa						
0.0	1.254	0.11820	1.220	0.23381	1.187	0.42128	1.156	0.70442
0.1	1.249	0.12133	1.216	0.23937	1.185	0.43020	1.156	0.71775
0.2	1.242	0.12438	1.212	0.24482	1.182	0.43903	1.154	0.73108
0.3	1.235	0.12733	1.206	0.25014	1.178	0.44772	1.152	0.74430
0.4	1.226	0.13019	1.200	0.25530	1.173	0.45620	1.148	0.75731
0.5	1.217	0.13294	1.192	0.26029	1.167	0.46443	1.143	0.76999
0.6	1.206	0.13556	1.182	0.26507	1.159	0.47234	1.137	0.78222
0.7	1.194	0.13806	1.172	0.26962	1.149	0.47986	1.129	0.79387
0.8	1.181	0.14043	1.159	0.27390	1.138	0.48693	1.118	0.80481
0.9	1.166	0.14265	1.145	0.27790	1.124	0.49349	1.106	0.81491
1.0	1.150	0.14471	1.129	0.28157	1.109	0.49946	1.092	0.82403

Table VI. Calculated Results for 1,3-Butadiene/cis-2-Butene

x	$T=278.15 \mathrm{~K}$		$T=298.15 \mathrm{~K}$		$T=318.15 \mathrm{~K}$		$T=338.15 \mathrm{~K}$	
	α	P, MPa						
0.0	1.377	0.10659	1.320	0.21392	1.274	0.38959	1.236	0.65679
0.1	1.368	0.11075	1.313	0.22123	1.267	0.40135	1.229	0.67460
0.2	1.359	0.11480	1.305	0.22835	1.261	0.41285	1.223	0.69200
0.3	1.350	0.11876	1.298	0.23532	1.254	0.42410	1.216	0.70905
0.4	1.341	0.12262	1.291	0.24215	1.248	0.43515	1.211	0.72579
0.5	1.333	0.12640	1.284	0.24885	1.242	0.44602	1.205	0.74229
0.6	1.326	0.13011	1.279	0.25546	1.237	0.45676	1.201	0.75862
0.7	1.320	0.13378	1.274	0.26201	1.234	0.46742	1.198	0.77487
0.8	1.315	0.13742	1.271	0.26851	1.231	0.47805	1.196	0.79113
0.9	1.314	0.14106	1.270	0.27502	1.230	0.48871	1.195	0.80748
1.0	1.317	0.14471	1.272	0.28157	1.232	0.49946	1.196	0.82403

Table VII. Calculated Results for n-Butane/trans-2-Butene

x	$T=278.15 \mathrm{~K}$		$T=298.15 \mathrm{~K}$		$T=318.15 \mathrm{~K}$		$T=338.15 \mathrm{~K}$		$T=358.15 \mathrm{~K}$	
	α	P, MPa								
0.0	1.143	0.11820	1.116	0.23381	1.091	0.42128	1.070	0.70442	1.051	1.10914
0.1	1.119	0.11982	1.096	0.23649	1.075	0.42523	1.057	0.70983	1.041	1.11596
0.2	1.097	0.12114	1.077	0.23864	1.058	0.42839	1.045	0.71412	1.032	1.12136
0.3	1.076	0.12218	1.059	0.24032	1.044	0.43081	1.033	0.71739	1.023	1.12544
0.4	1.056	0.12298	1.043	0.24158	1.031	0.43259	1.023	0.71973	1.015	1.12829
0.5	1.040	0.12357	1.029	0.24247	1.020	0.43380	1.014	0.72126	1.008	1.13005
0.6	1.026	0.12397	1.018	0.24307	1.011	0.43453	1.006	0.72208	1.002	1.13081
0.7	1.016	0.12424	1.010	0.24341	1.004	0.43487	1.000	0.72231	0.997	1.13069
0.8	1.009	0.12440	1.004	0.24358	0.999	0.43492	0.995	0.72206	0.992	1.12983
0.9	1.005	0.12448	1.000	0.24363	0.995	0.43476	0.991	0.72144	0.988	1.12833
1.0	1.004	0.12454	1.000	0.24363	0.994	0.43449	0.989	0.72058	0.986	1.12632

unit and the probable error in x is ± 0.0001 unit.

Relative Volatilities

Equation 10 was integrated for each of the six binaries by using a point relaxation technique. The results are presented in Tables IV-IX. Table X contains the constants and equations used to calculate the saturated-liquid volumes and virial coefficients used in the integration. The constants and equations for liquid volume were derived from those given by API
(21). Virial coefficients were taken from literature values and fitted with a polynomial equation. Sources were as follows: for butadiene, Meyers et al. (22); for butane, Sage et al. (11), Kay (13), Olds et al. (23), and Sliwinski (24); for trans-2-butene, Roper (25), and Huisman and Sage (19); for cis-2-butene, Roper (25). Extrapolation from 343 to 358 K for cis-2-butene was necessary because of the limited data. The estimated accuracy of the polynomial fit to temperature is 5% for butadiene and butane and 10% for trans-2-butene and cis-2-butene.

Table VIII. Calculated Results for n-Butane/cis-2-Butene

x	$T=278.15 \mathrm{~K}$		$T=298.15 \mathrm{~K}$		$T=318.15 \mathrm{~K}$		$T=338.15 \mathrm{~K}$		$T=358.15 \mathrm{~K}$	
	α	P, MPa	α	P, MPa	α	P, MPa	α	$P \mathrm{MPa}$	α	P, MPa
0.0	1.295	0.10659	1.228	0.21392	1.180	0.38959	1.146	0.65679	1.120	1.03949
0.1	1.263	0.10968	1.205	0.21888	1.162	0.39698	1.130	0.66734	1.106	1.05424
0.2	1.231	0.11237	1.181	0.22324	1.144	0.40352	1.115	0.67668	1.092	1.06715
0.3	1.199	0.11469	1.158	0.22705	1.126	0.40928	1.100	0.68488	1.079	1.07839
0.4	1.169	0.11667	1.136	0.23036	1.109	0.41432	1.087	0.69206	1.068	1.08813
0.5	1.142	0.11837	1.117	0.23324	1.092	0.41873	1.075	0.69832	1.058	1.09657
0.6	1.121	0.11983	1.101	0.23575	1.082	0.42258	1.065	0.70380	1.049	1.10391
0.7	1.105	0.12112	1.088	0.23796	1.071	0.42599	1.056	0.70862	1.043	1.11035
0.8	1.095	0.12229	1.079	0.23996	1.064	0.42904	1.050	0.71293	1.038	1.11612
0.9	1.093	0.12341	1.074	0.24182	1.059	0.43183	1.046	0.71687	1.036	1.12146
1.0	1.097	0.12454	1.074	0.24363	1.056	0.43449	1.044	0.72058	1.035	1.12658

Table IX. Calculated Results for trans-2-Butene/cis-2-Butene

x	$T=278.15 \mathrm{~K}$		$T=298.15 \mathrm{~K}$		$T=318.15 \mathrm{~K}$		$T=338.15 \mathrm{~K}$		$T=358.15 \mathrm{~K}$	
	α	P, MPa								
0.0	1.109	0.10659	1.090	0.21392	1.075	0.38959	1.064	0.65679	1.054	1.03949
0.1	1.108	0.10781	1.089	0.21599	1.075	0.39285	1.063	0.66164	1.053	1.04651
0.2	1.107	0.10901	1.088	0.21804	1.074	0.39609	1.063	0.66648	1.053	1.05352
0.3	1.106	0.11020	1.087	0.22007	1.073	0.39932	1.062	0.67130	1.052	1.06052
0.4	1.105	0.11138	1.087	0.22209	1.072	0.40252	1.061	0.67609	1.052	1.06750
0.5	1.104	0.11255	1.086	0.22409	1.071	0.40570	1.061	0.68087	1.051	1.07447
0.6	1.102	0.11370	1.085	0.22607	1.071	0.40886	1.060	0.68562	1.051	1.08143
0.7	1.101	0.11485	1.084	0.22803	1.070	0.41200	1.060	0.69036	1.050	1.08838
0.8	1.100	0.11598	1.083	0.22998	1.070	0.41511	1.059	0.69507	1.050	1.09531
0.9	1.098	0.11710	1.082	0.23191	1.069	0.41821	1.058	0.69976	1.049	1.10223
1.0	1.097	0.11820	1.081	0.23381	1.068	0.42128	1.058	0.70442	1.048	1.10914

Table X. Constants for Liquid Volumes and Second Virial Coefficients

	$1,3-$ butadiene	n-butane	trans- 2-butene	cis- 2-butene
a	17.7256	15.0324	16.2977	16.5419
b	0.01865	0.01487	0.01636	0.01604
c	129.4	120.4	124.8	124.8
d	459.2	459.2	464.2	462.3
a^{\prime}	3.6296	19.0437	3.8344	4.5900
b^{\prime}	$-2.4427 \times$	$-16.2074 \times$	$-2.0086 \times$	$-2.4378 \times$
	10^{-2}	10^{-2}	10^{-2}	10^{-2}
c^{\prime}	$5.8301 \times$	$4.6642 \times$	$2.7713 \times$	$3.3522 \times$
	10^{-5}	10^{-4}	10^{-5}	10^{-5}
d^{\prime}	$-4.7588 \times$	$-4.4919 \times$	0.0	0.0
	10^{-8}	10^{-7}		
$V^{\mathrm{L}}=(a-b T-c /(d-T))^{-1}$				
$-B=a^{\prime}+b^{\prime} T+c^{\prime} T^{2}+d^{\prime} T^{3}$				

The pressures were correlated with a form of Redlich-Kister equation
$\ln \left(P / P_{\mathrm{R}}\right)=x(1-x)\left(B+C(2 x-1)+D(2 x-1)^{2}\right)$
The reference pressure, P_{R}, is the Raoult's law pressure

$$
\begin{equation*}
P_{\mathrm{R}}=x P_{1}+(1-x) P_{2} \tag{15}
\end{equation*}
$$

where the pure-component vapor pressures are averaged from the experimental data.

Flgures 5 and 6 show eq 14 , along with the experimental points, for two binaries, chosen as representative. For each binary, a least-squares fit of the isothermal experimental data was made to eq 14. The constants were then smoothed with temperature. Constants for each binary and isotherm are given in Table XI. The number of constants varied with the quality of fit required-three were deemed necessary for the butadiene/butane binary, and one sufficient for the trans-2-butene/ cls-2-butene binary. The B constant indicates the size of the deviation from Raoult's law, and the C constant accounts for the skew in the curve.

The calculation of the relatlve volatilities is most sensitive to errors in the deviation from Raoult's law. Secondary sources

Figure 5. Deviations from Raoult's law for 1,3-butadiene/n-butane.
of uncertainties are errors in the pure-component vapor pressures and the virial coefficients. Errors in the liquid volume have negligible effect. For the constants used in these calculations (Tables II, X, and XI) the estimated probable errors in the relative volatillties for each binary are as follows: butadiene/ n-butane, ± 0.005; butadiene/trans-2-butene, ± 0.010; buta-diene/cis-2-butene, $\pm 0.010 ; n$-butane/trans-2-butene, ± 0.007;

Flgure 8. Deviations from Raoult's law for n-butane/cls-2-butene.

Figure 7. Relative volatilties for 1,3-butadiene/n-butane.
n-butane/cls-2-butene, ± 0.008; trans-2-butene/cls-2-butene, ± 0.005.

A limited amount of literature data on these systems is avallable. Kahre and Hankinson (26) obtained relative volatilities for the three butadiene binarles using the direct sampling technique. These data are presented in Flgures 7-9, along with

Figure 8. Relative volatilities for 1,3-butadiene/trans-2-butene.

Figure 9. Relative volatlities for 1,3-butadiene/cis-2-butene.
Interpolated relative volatilities from this study, Laurance and Swift (3) also studied the butadiene/butane binary using the total pressure technique. Figure 10 compares their results with the interpolated results of this study. Agreement with the data of Kahre and Hankinson is generally good, although this study gives slightly lower relattve volatlities for low butadlene concentrations in the butadiene/butane binary. The results of Laurance and

Table XI. Redlich-Kister Constants

binary	T, K	B	C	D	P_{1}, MPa	P_{2}, MPa
1,3-butadiene (1)/n-butane (2)	278.15	0.2292	-0.0319	0.0538	0.14471	0.12454
	298.15	0.1967	-0.0220	0.0371	0.28157	0.24363
	318.15	0.1706	-0.0169	0.0255	0.49946	0.43449
	338.15	0.1494	-0.0153	0.0177	0.82403	0.72058
1,3-butadiene (1)/trans-2-butene (2)	278.15	0.0550	0.0029		0.14471	0.11820
	298.15	0.0502	0.0009		0.28157	0.23381
	318.15	0.0440	0.0043		0.49946	0.42128
	338.15	0.0370	0.0072		0.82403	0.70442
1,3-butadiene (1)/cis-2-butene (2)	278.15	0.0252	-0.0117		0.14471	0.10659
	298.15	0.0179	-0.0066		0.28157	0.21392
	318.15	0.0138	-0.0034		0.49946	0.38959
	338.15	0.0120	-0.0014		0.82403	0.65679
n-butane (1)/trans-2-butene (2)	278.15	0.0717	-0.0250		0.12454	0.11820
	298.15	0.0624	-0.0217		0.24363	0.23381
	318.15	0.0549	-0.0177		0.43449	0.42128
	338.15	0.0489	-0.0134		0.72058	0.70442
	358.15	0.0438	-0.0089		1.12632	1.10914
n-butane (1)/cis-2-butene (2)	278.15	0.0958	-0.0452		0.12454	0.10659
	298.15	0.0773	-0.0298		0.24363	0.21392
	318.15	0.0644	-0.0213		0.43449	0.38959
	338.15	0.0556	-0.0177		0.72058	0.65679
	358.15	0.0497	-0.0176		1.12632	1.03949
trans-2-butene (1)/cis-2-butene (2)	278.15	0.0053			0.11820	0.10659
	298.15	0.0039			0.23381	0.21392
	318.15	0.0026			0.42128	0.38959
	338.15	0.0015			0.70442	0.65679
	358.15	0.0006			1.10914	1.03949

Flgure 10. Relative volatilities for 1,3-butadiene/n-butane.
Swift are also somewhat higher than those of this study for the same binary.

Conclusions

A significant amount of new vapor pressure data has been determined on systems containing 1,3-butadiene, n-butane, trans-2-butene, and cis-2-butene. Integration of the binary Gibbs-Duhem equation gave relative volatlities with a probable
error of no more than ± 0.010 unit.

Glossary

A, B, C, constants for Goodwin equation D
B, C, D temperature-dependent Redlich-Kister constants
B second virial coefficient, MPa^{-1}
f fugacity
$P \quad$ pressure, MPa
$P_{R} \quad$ reference pressure, MPa
$R \quad$ gas constant, $8.31441 \times 10^{-3} \mathrm{~L} \mathrm{MPa} /(\mathrm{mol} \mathrm{K})$
T temperature, K
$T_{\mathrm{C}} \quad$ critical temperature, K
$T_{R} \quad$ reference temperature, K
V molar volume, $\mathrm{L} /(\mathrm{g} \mathrm{mol})$
$x_{1} \quad$ mole fraction of component i in liquid
$x \quad$ mole fraction of most volatile component in liquid
y_{1} mole fraction of component i in vapor
$z_{i} \quad$ mole fraction of component i
\boldsymbol{Z} compressibility factor

Greek Letters

$\alpha \quad$ relative volatility, referenced to more volatile component
$\phi_{l} \quad$ fugacity coefficient of component i

Lherature Clted

(1) Maniey, D. B. Ph.D. Dissertation, University of Kansas, Lawrence, KS, 1970.
(2) Manley, D. B.; Swift, G. W. J. Chem. Eng. Data 1971, 16, 301.
(3) Laurance, D. R.; Swlft, G. W. J. Chem. Eng. Data 1974, 19, 61.
(4) Steele, K.; Poling, B. E.; Manley, D. B. J. Chem. Eng. Data 1978, 21, 399.
(5) Martinez-Ortiz, J. A.; Manley, D. B. J. Chem. Eng. Data 1978, 23, 165.
(6) Walker, S. L. M.S. Thesis, University of Missouri-Rolla, Rolla, MO, 1973.
(7) Steele, K. M.S. Thesis, University of Missourt-Rolla, Rolla, MO, 1975.
(8) Goodwin, R. D. J. Res. Natl. Bur. Stand. Sect. A 1974, 79, 71.
(9) "Selected Values of Properties of Hydrocarbons and Related Compounds"; American Petroleum Institute, Research Project 44, 1952 and supplements.
(10) Scott, R. B.; Meyers, C. H.; Rands, R. D., Jr.; Brickwedde, F. G.; Bekkedahl, N. J. Res. Natl. Bur. Stand. (U.S.) 1945, 35, 39, RP 1661.
(11) Sage, B. H.; Webster, D. C.; Lacey, W. N. Ind. Eng. Chem. 1937, 29, 1188.
(12) Dana, L. I.; Jenkins, A. C.; Burdick, J. N.; Timm, R. C. Refrig. Eng. 1928, 12, 387.
(13) Kay, W. B. Ind. Eng. Chem. 1940, 32, 358.
(14) Beattle, J. A.; Simard, G. L.; Su, G. J. J. Am. Chem. Soc. 1939, 61, 24.
(15) Wackher, R. C.; Linn, C. B.; Grosse, A. V. Ind. Eng. Chem. 1945, 37, 464.
(16) Kistlakowsky, G. B.; Ruhoff, J. R.; Smith, H. A.; Vanghan, W. E. J. Am. Chem. Soc. 1935, 57, 876.
(17) Lamb, A. B.; Roper, E. E. J. Am. Chem. Soc. 1940, 62, 806.
(18) Guttman, L.; Plizer, K. S. J. Am. Chem. Soc. 1945, 67, 324.
(19) Hulsman, J.; Sage, B. H. J. Chem. Eng. Data 1984, 9, 536.
(20) Scott, R. B.; Ferguson, W. J.; Brickwedde, F. G. J. Res. Natt. Bur. Stand. (U.S.) 1944, 33, 1, RP 1592.
(21) "Technical Data Book", 2nd ed.; American Petroleum Institute, 1970.
(22) Meyers, C. H.; Cargoe, C. S.; Mueller, E. F. J. Res . Natt . Bur . Stand . (U.S.) 1949, 39, 507, RP 1844.
(23) Olds, R. H.; Reamer, H. H.; Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1944, 36, 282
(24) Sliwinski, P. Z. Phys . Chem. 1969, 63, 263
(25) Roper, E. E. J. Phys. Chem. 1940, 44, 835
(26) Kahre, L. C.; Hankinson, R. W. Hydrocarbon Process. 1972, 51, 94.

Recelved for review September 14, 1981. Accepted May 10, 1982.

Excess Volumes of 1,1,2,2-Tetrachloroethane + Normal Alkanols ($\mathrm{C}_{3}-\mathrm{C}_{8}$)

Nettem V. Choudary, A. Krlshnalah, and Puligundla R. Naidu*
Sri Venkateswara University Chemical Laboratories, Tirupati 517 502, India

Abstract

Excess volumes for the binary mixtures of 1,1,2,2-tetrachloroethane with 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol have been determined at 303.15 K. The excess function is negative in mixtures rich in alcohols and it becomes posilve at different mole tractions of the chloroalkane. The results have been explained in terms of depolymerization of hydrogen-bonded alcohol aggregates, interstitial accommodation of halogenated hydrocarbon in the polymers of alcohols, and weak hydrogen-bond Interactions between unlike molecules.

Introduction

We report here new excess volume data for six binary mixtures of 1,1,2,2-tetrachloroethane with 1-alkanols. The alcohols include 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol. The results are examined in the light of depolymerization of alcohols, interstitial accommodation of chloroalkane in hydrogen-bonded alcohol aggregates, possible hydrogen-bond interactions of the type $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{O}$, between unlike molecules, and the influence of chain length of the alcohol on the aforesaid factors.

Experimental Section

Excess volumes were measured by using the dilatometer described by Rao and Naidu (1). The mixing cell contained two bulbs of different capacities which were connected through a U-tube having mercury to separate the two components. One end of the bulb was fitted with a capillary (1-mm l.d.) and the other end of the second bulb was fixed with a ground-glass

[^1]stopper. The V^{E} values were accurate to $\pm 0.003 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Purtication of Materlals. All the materlals were purified by the methods described by Reddick and Bunger (2). 1,1,2,2Tetrachloroethane (Riedel) was shaken with concentrated sulfuric acid for 10 min at $80-90^{\circ} \mathrm{C}$. The operation was repeated until the acid developed no more color. The chloroalkane was then washed with water, steam distilled, dried with potassium carbonate, and fractionally distilled. 1-Propanol (J. T. Baker) and 1-butanol (BDH) were refluxed over freshly ignited calcium oxide for 6 h and distilled with a fractionating column. 1-Pentanol (J. T. Baker) was dried over Drierite and fractionally distilled. 1-Hexanol (BDH England), 1-heptanol (Koch-Light Laboratories Ltd., England), and 1-octanol (BDH England) were fractionally distilled. A fractionating column that contained 30 theoretical plates was used in all cases. The purity of the samples was checked by comparing the measured densities of the compounds with those reported in the literature (3). Densities were determined by using a bicapillary-type pycnometer which offered an accuracy of 2 parts in 10^{5}.

Resulis

The experimental excess volumes of the six binary mixtures are given in Table I and are also graphically represented in Figure 1. The dependence of V^{E} on composition may be expressed by an empirical equation of the form

$$
\begin{align*}
& V^{E} /\left(\mathrm{cm}^{3} \mathrm{mal}^{-1}\right)= \\
& \quad x(1-x)\left\{a_{0}+a_{1}(2 x-1)+a_{2}(2 x-1)^{2}\right\} \tag{1}
\end{align*}
$$

where a_{0}, a_{1}, and a_{2} are adjustable parameters and x is the mole fraction of 1,1,2,2-tetrachloroethane. The values of the parameters obtained by the least-squares method are included in Table II along with the standard deviation $\sigma\left(V^{\mathrm{E}}\right)$. The values of $\sigma\left(V^{E}\right)$ were obtained by using the equation

$$
\sigma\left(V^{\mathrm{E}}\right)=\left[\frac{\sum\left(V_{\text {calcod }}^{\mathrm{E}}-V^{\mathrm{E}}{ }_{\text {exptut }}\right)^{2}}{(n-P)}\right]^{1 / 2}
$$

[^0]: - This paper was presented at the 72 nd Annual Meeting of the American Institute of Chemical Engineers, Nov 25-29, 1979, San Francisco, CA.

[^1]: - Address correspondence to this author at the following address: Depart ment of Chemistry, College of Engineering, Srl Venkateswara University, Tirupati 517 502, India.

